International Journal of
Research and Innovation

Y
IJR IM . Management

Vol:11 No 1 2025
Development and Implementation of a ROS-Based Differential Drive

Robot for Autonomous Navigation

ISSN 2462-1293

Ku Mohammad Yusri Bin Ku Ibrahim?, Faizah Binti Utar @ Haji Mokhtar?,
Addzrull Hi-Fi Syam Bin Ahmad Jamil?
! Department of Electrical Engineering, Politeknik Tuanku Syed Sirajuddin.
2 Department of Electrical Engineering, Politeknik Seberang Perai.
kmyusri@ptss.edu.my

Abstract: The development of autonomous mobile robots has gained significant attention due to their potential
applications in navigation, surveillance and industrial automation. However, achieving precise localization and
obstacle avoidance in dynamic environments remains a challenge, particularly for differential drive robots. This
study focuses on the development of a ROS-based differential drive robot designed for autonomous navigation.
The robot is equipped with a Teensy microcontroller, DC motors with encoders for motion control, an RPLIDAR
Al for mapping and obstacle detection and a GY-85 IMU for inertial sensing and orientation estimation. To
address the challenges of localization and navigation, the system integrates ROS-based software packages for
sensor data processing, motion control, and real-time path planning. The navigation framework employs a
proportional-integral-derivative control strategy to ensure smooth and accurate movement. Additionally,
simultaneous localization and mapping techniques are used to construct real-time maps of the environment while
enabling autonomous path execution. Experimental evaluations demonstrate the robot’s ability to navigate
predefined environments efficiently while avoiding obstacles. Preliminary results indicate that the system
achieves reliable localization with minimal drift and effective trajectory tracking with position errors of 5.5-12.5
cm with traveled times of 96-123 s. This study contributes to the field of autonomous robotics by presenting a
robust and adaptable navigation framework for differential drive robots. The findings highlight the effectiveness
of ROS-based integration for autonomous navigation and provide insights into potential improvements for
enhancing real-time decision-making, mapping accuracy and system robustness in complex environments.

Keywords: Autonomous Navigation, Differential Drive Robot, Robot Operating System (ROS), Simultaneous
Localization and Mapping (SLAM), Real-Time Mapping.

1.0 INTRODUCTION

Advancements in open-source robotics software, compact computing platforms and modern
sensor technologies have significantly contributed to the progress of autonomous mobile robot
development. Differential drive robots, characterized by two independently actuated wheels, have
gained widespread adoption due to their mechanical simplicity, ease of control and suitability for indoor
navigation, monitoring and industrial automation tasks. Despite these advantages, achieving precise
localization and reliable obstacle avoidance in dynamic and unstructured environments remains a
considerable challenge (Phueakthong & Varagul, 2021). To address these complexities, recent research
emphasizes the integration of flexible software platforms such as Robot Operating System 2 (ROS2),
dependable hardware architectures and advanced multi-sensor fusion techniques. This project aims to
design and implement a ROS2-based differential drive robot equipped with wheel encoders, a GY85

inertial measurement unit (IMU) and an RPLIDAR A1 sensor for simultaneous mapping, localization

43

International Action Research on TVET Conference 2025 (IARTC 2025)

and obstacle avoidance. The overarching objective is to demonstrate a cost-effective, accurate, and

reliable autonomous navigation system leveraging widely available open-source technologies.

2.0 LITERATURE REVIEW

The evolution of autonomous mobile robotics has accelerated in recent years, driven largely by
advancements in modular software frameworks and integrated hardware systems. The Robot Operating
System (ROS), and its enhanced iteration ROS2, have emerged as standard platforms for developing
scalable and adaptable robotic systems (Macenski et al., 2022; Phueakthong & Varagul, 2021) . ROS2
offers significant improvements over its predecessor, including enhanced communication reliability,
real time data exchange capabilities and decentralized system management. These enhancements are
critical for enabling safe and efficient navigation in dynamic and uncertain environments (Phueakthong
& Varagul, 2021).

A central technological innovation in modern robotics is sensor fusion, which refers to the
combination of data from diverse sensors such as wheel encoders, IMUs, and LiDAR. This
methodology enhances the robot's ability to estimate its position and perceive its environment, thereby
mitigating the limitations of individual sensors. For instance, integrating wheel odometry, IMU, and
visual or LiDAR data through algorithms like the Extended Kalman Filter (EKF) has been shown to
improve localization accuracy, particularly in GPS denied or rapidly changing settings (Phueakthong
& Varagul, 2021; Song & Zhang, 2024; Yan et al., 2022). Micro ROS, a specialized extension of ROS2,
further supports efficient, real-time communication between resource-constrained microcontrollers and
the main navigation architecture (Phueakthong & Varagul, 2021).

Another essential aspect is Simultaneous Localization and Mapping (SLAM), which enables a
robot to construct a map of its environment while concurrently estimating its location within that map.
Tools such as SLAM Toolbox, Cartographer and ORB SLAMZ2, all compatible with ROS2, facilitate
the generation of consistent and accurate two- or three-dimensional environmental maps (Macenski &
Jambrecic, 2021; Phueakthong & Varagul, 2021). Experimental research confirms that multi sensor
SLAM approaches can maintain localization errors within a few centimeters, which is critical for
successful operation in constrained or complex spaces (Song & Zhang, 2024; Yan et al., 2022).

Obstacle detection and avoidance have similarly been advanced through the integration of
LiDAR sensors, which provide comprehensive 360-degree environmental scanning. Contemporary
algorithms are capable of rapidly processing this data, enabling the detection and avoidance of obstacles
in real time (Mochurad et al., 2023; Phueakthong & Varagul, 2021). ROS2’s Navigation2 software
exemplifies this progress by integrating both global and local planning strategies, continuously updating

the robot’s trajectory as environmental conditions evolve (Macenski et al., 2022).

44

International Action Research on TVET Conference 2025 (IARTC 2025)

Finally, visualization and development tools such as RViz2 are essential for monitoring system
performance, facilitating debugging, and ensuring cohesive operation among the system’s components
(Macenski et al., 2022; Phueakthong & Varagul, 2021).

In summary, present research underscores that the integration of ROS2, advanced sensor fusion,
accurate SLAM algorithms, and comprehensive visualization tools is vital for developing reliable
autonomous mobile robots. These combined strategies address persistent challenges in localization and
obstacle avoidance, directly supporting the objectives of this project.

3.0 METHODOLOGY

This section describes the methodology utilized in developing a ROS-based autonomous
differential-drive mobile robot, detailing both hardware and software components systematically.
Initially, the mechanical design is explained, highlighting a structured three-layer configuration that
optimizes space usage, facilitates maintenance, and improves operational efficiency. Subsequent
subsections elaborate on each hardware layer, starting from the bottom layer, which includes essential
components such as the Teensy 4.1 microcontroller for real-time control, a custom-designed YHN-ROS
board for streamlined sensor integration, a Cytron MDD10A motor driver for precise motor
management and a 12V LiPo battery ensuring stable and reliable power distribution.

The middle layer is dedicated to the central processing unit, a Raspberry Pi 4 single-board
computer responsible for managing high-level computational tasks. It runs critical operations, including
Simultaneous Localization and Mapping (SLAM), autonomous navigation algorithms, and sensor
fusion through ROS2. The top layer houses the RPLIDAR A1l sensor, strategically positioned to provide
a comprehensive 360-degree environmental scan crucial for accurate mapping and obstacle detection.

Finally, the methodology details the integration of sensors such as the DC gear motors with
encoders for accurate odometry and the GY-85 IMU for refined orientation data through sensor fusion
techniques, particularly the Extended Kalman Filter (EKF). Software architecture leveraging ROS2,
Micro-ROS for microcontroller integration and RViz2 for real-time visualization and monitoring is also
described, offering readers a clear insight into the integrated system architecture that supports

autonomous navigation.
3.1 Mechanical Design and Hardware Architecture
This robot's structural architecture consists of three layers, each of which contains specific

components necessary for operation. In addition to improving space management and aesthetics, this

well-organized design improves the robotic system's overall efficiency and maintainability.

45

International Action Research on TVET Conference 2025 (IARTC 2025)

The bottom layer of the robot acts as the base and contains essential hardware parts that control
movement and power distribution, as seen in Figure 1. The Teensy 4.1 microcontroller, the specially
made YHN-ROS board, the Cytron MDD10A motor driver and a 12V LiPo battery are all included.
The YHN-ROS board aids in optimizing the wiring and connection between the encoder, IMU, and
motor driver, providing a small and dependable system. The Cytron MDDZ10A driver is in charge of
managing the motors by receiving PWM signals from the microcontroller. Separate from the computer
systems, the 12V LiPo battery supplies the motors with steady and sufficient power, avoiding voltage

drops while in motion.

RPLIDAR

Lipo Battery

Motor Right With Encoder !

| Motor Left With Encoder

Figure 1: Design of the Robot.

Raspberry Pi 4 the robot's central processing unit is in the middle layer. Running the ROS
(Robot Operating System) and managing sophisticated operations like mapping, navigation and sensor
fusion are the responsibilities of this single board computer. The LiDAR sensor is positioned in the top
layer, which gives it an unhindered 360-degree view for precise localization and mapping. For the
sensor to operate at its best and provide accurate environmental perception, this position is essential.
Two DC Gear Motors, each with a speed of 60 RPM and a torque of 6.73 kgf-cm, are mounted at the
front of the robot to facilitate movement. To provide odometry data, these motors are equipped with
encoders. This arrangement guarantees balance, stable motion, and smooth turning due to two wheels

with a 7 cm diameter paired with a caster ball at the back.

46

International Action Research on TVET Conference 2025 (IARTC 2025)

3.2 Electronic Devices

3.2.1 Single Board Computer (SBC)

This robot was developed using a Raspberry Pi 4 Single Board Computer (SBC) with 8GB of
RAM and a 64GB Micro SD card for storage. The Raspberry Pi Foundation created the Raspberry Pi
4, a credit card-sized computer that can do many of the functions of a traditional desktop computer. It
is a well-liked option for robotics and embedded system applications due to its small size, low cost and
adaptability.

The Raspberry Pi 4 functions as the primary processing unit in this robotic system and is
essentially the robot's “brain”. It is in charge of controlling communication with external devices like
the LIDAR sensor and the Teensy 4.1 microcontroller. The Raspberry Pi 4 runs key software
components of the Robot Operating System (ROS) framework and manages real-time data processing.
Simultaneous Localization and Mapping (SLAM), mapping, navigation and sensor fusion algorithms
comprise some of the primary features built into the Raspberry Pi 4. These elements are essential to the
robot's ability to function autonomously because they allow it to sense its surroundings, locate itself on
a map and make smart choices about how to navigate through space. The system also benefits from the
Raspberry Pi 4's effective multitasking and high-level computation capabilities. Moreover, it makes it
easy to communicate with other systems, like a PC running Ubuntu 20.04, enabling remote software
updates, debugging and monitoring throughout development and deployment.

In this study, the Raspberry Pi 4 is a general strong and affordable computing platform. By
bridging the gap between high-level autonomous decision-making and low-level hardware control, it is

essential to the robot's ability to operate dependably and intelligently in its surroundings.

3.22 Teensy4.l

This robot operates by the Teensy 4.1, a high-performance ARM Cortex-M7 microcontroller
that is known for its dependability and speed in real-time applications. Teensy 4.1 is an essential
component of this robotic system because it acts as a bridge between the Raspberry Pi 4-powered ROS2
system and several low-level hardware parts, including encoders, DC motors and the GY-85 IMU
Sensor.

Controlling the motors' speed and direction in response to velocity commands from the ROS2
topic /cmd_vel is one of the Teensy 4.1°s primary tasks, as seen in Figure 2. Micro-ROS, which allows
communication between the microcontroller and the ROS2 environment, is used to transmit these
commands. To ensure that the robot travels along the correct path, the microcontroller interprets the

commands and modifies the PWM signals sent to the motor driver.

47

International Action Research on TVET Conference 2025 (IARTC 2025)

WiFi
UBUNTU PC RPLIDAR A1
‘\.) Right Encoder |4 W
Voltage Step Down ™ Raspberry Pi4 *
A I
Right Wheel

L ™ +

MU o] Teensya. - Mator Driver 12v¢

+ 4
Left Wheal

'

Left Encoder |4

5V

Figure 2: Hardware Architecture.

Apart from controlling the motors, the Teensy 4.1 is also in charge of gathering odometry
information from the encoders that are connected to the motors. This information comprises the robot’s
estimated position, current velocity and distance traveled. After processing, the microcontroller sends
this data to the ROS2 system, where it serves as a vital input for the navigation and SLAM algorithms.
Building maps and monitoring the robot’s movement in real time require precise odometry.

Additionally, the Teensy 4.1 reads information from the GY-85 IMU, which consists of a
magnetometer, gyroscope and accelerometer. Pitch, roll, and yaw orientation data from these sensors
are crucial for increasing the robot’s directional accuracy. In SLAM processes, where accurate
positioning and heading estimates have a major impact on mapping quality and navigation success, this
orientation information is highly useful.

Overall, the Teensy 4.1 microcontroller connects low-level sensor and actuator hardware to the
high-level ROS2 framework, forming the core of the robot's real-time control system. For autonomous
navigation, real-time sensor fusion and dependable robot operation to be possible, its effective data

handling and control capabilities are essential.

3.2.3 YHN-ROS Board

A specially designed development board called the YHN-ROS Board was designed to make it
easier to integrate important hardware parts of an autonomous robot system. Specifically made to work
with the effective Teensy 4.1 microcontroller, this board offers specific connections for key parts like
the motor driver, IMU GY-85 and motor encoders. The YHN-ROS Board provides a centralized
platform for hardware interfacing, which significantly simplifies wiring and lowers the possibility of

human error during assembly.

48

International Action Research on TVET Conference 2025 (IARTC 2025)

Organizing the complex wiring required to connect multiple sensors and actuators is one of the
most frequent problems encountered when developing autonomous robots. The process can be tedious,
prone to errors and challenging to debug in the absence of a standardized interface. The Teensy
microcontroller and peripherals are connected correctly thanks to the YHN-ROS Board’s compact
design and clearly labelled pins. In addition to increasing system dependability, this speeds up the
development process’s testing and prototyping stages. Using the open-source PCB design program
KiCad, the YHN-ROS Board is a prime example of effective hardware design for robotics applications.
Since KiCad offers flexible customization, developers can alter the board layout to suit hardware
configurations or project requirements.

KiCad was used in a systematic design process to create the YHN-ROS Board. The YHN-ROS
Board was developed to support the Teensy 4.1 microcontroller for robotics applications, as
demonstrated in Figure 3. As illustrated by Figure 4, the design started with circuit development in
KiCad's schematic editor, where necessary parts like the encoder, motor drivers, microcontroller and
IMU were logically connected. Following verification, KiCad’s PCB editor was used to complete the
layout process, producing the board design shown in Figure 5. In order to verify component placement
and enclosure compatibility, a comprehensive 3D representation of the board was finally produced, as
shown in Figure 6.

-1 ’
|
49 '
.! -
!
3
i
|
]

Figure 3: YHN-ROS Board.

49

International Action Research on TVET Conference 2025 (IARTC 2025)

028

(e 27>

[sp/0.38)

\R:v:
& 171

YHN-ROS BOARD Vi

MOTOR DRIVER 2

MOTOReDRIVER 2

O] 643 ¢ g3
HO| &1

v

810,020 O]
DI00-0-00|

+3.3Y

Figure 5: PCB design of YHN-ROS Board Using KiCad.

50

o MOTOR&

International Action Research on TVET Conference 2025 (IARTC 2025)

|
|

]
)
)
o)
o
)
o
ol
° -
Lo{
(@
o|
ol
o]
e
(6}
o
o
o
o
o
()
o
Ol¢

YHN-ROS BOARD Vi

Qx.

Figure 6: 3D View of YHN-ROS Board Created Using KiCad.

3.2.4 Sensor LIDAR (Light Detection and Ranging)

LIDAR data is commonly published as messages in the ROS ecosystem with the topic
sensor_msgs/LaserScan. Important details like obstacle distances, scan angles and scanning frequency
are contained in these messages. Several ROS packages then use this data to carry out crucial tasks like
path planning, obstacle avoidance and SLAM (Mochurad et al., 2023). Integrating LIDAR data with
other sensor data, such as that from an encoder or IMU, to create a more reliable and accurate navigation
system is one of ROS’s advantages (Firmansyah et al., 2024; Yan et al., 2022).

The RPLIDAR Al isthe LIDAR sensor utilized in this study. Since it can continuously perform
360-degree scans, this sensor is widely used in robotics. It works well in moderately sized spaces or
indoor settings because of its detection range of 0.15 to 12 meters. This feature enables the robot to take
a comprehensive image of its environment without having to move the sensor. In addition to being
utilized for creating static maps, the RPLIiDAR A1’s distance data is essential for figuring out the robot’s
current location in relation to its surroundings. By comprehending its current location and devising a

suitable path while dodging obstacles, this allows the robot to navigate on its own.

3.25 Inertial Measurement Unit (IMU)

The three main sensors that collectively make up the GY-85 IMU module are a three-axis
magnetometer (HMC5883L), a three-axis gyroscope (ITG-3205) and a three-axis accelerometer

51

International Action Research on TVET Conference 2025 (IARTC 2025)

(ADX345). Each of these components provides crucial information for orientation and motion tracking.
In order to determine the direction and speed of movement, the accelerometer measures linear
acceleration in the x, y and z axes. The system can monitor rotational movements thanks to the
gyroscope’s ability to provide information about angular velocity along the yaw, pitch and roll axes.
The robot’s heading direction is determined by the magnetometer, which senses the Earth’s magnetic
field. This is particularly helpful for resolving orientation drift over time.

In order to maintain precise turning and heading during autonomous navigation, the IMU
provides real-time data on the robot’s angular changes. Nevertheless, both the encoders’ and the IMU’s
data are frequently noisy and prone to random errors or drift. An Extended Kalman Filter (EKF) is used
in a sensor fusion technique to address this. To generate a more precise and reliable estimate of the
robot’s pose (position and orientation), the EKF integrates information from the encoders and IMU
(Moore & Stouch, n.d.; Yan et al., 2022). The ekf_node from the robot_localization package in ROS2
can be employed to accomplish this.

3.2.6 Motor System

One of the most important parts of an autonomous robot are its motors, which are directly in
control, allowing it to move and navigate its surroundings. In this project, the robot's front section has
two motors that are each attached to a wheel and an encoder. By independently adjusting the speed and
direction of each motor, these motors’ differential drive capability enables the robot to move forward,
backward, and turn.

The Cytron MDD10A motor driver, which is capable of controlling high current loads and
provides reliable functionality appropriate for robotics applications, powers the motors. The motors are
powered by a specialized 12V LiPo battery to ensure consistent and continuous operation. At the same
time, a separate 12V LiPo battery powers the Raspberry Pi 4, which acts as the central processing unit
for the ROS2 system. By keeping voltage drops and electrical noise from impairing the Raspberry Pi’s
performance during periods of high motor activity, this separation of power sources is essential for
maintaining system stability.

This system balances speed and torque for smooth and controlled mobility, with each motor
rated at 60 RPM under normal load. Each motor has an encoder that measures rotational movement,
providing the ROS2 system with crucial feedback. Odometry, the ongoing estimation of the robot’s
position and movement over time, makes use of this feedback. For more complex navigation tasks like
path planning, mapping and localization, accurate odometry is crucial.

The function of the YHN-ROS board as a central interface that connects the hardware and the
ROS2 ecosystem is highlighted by Figure 7, which shows how the board is connected to the motor
driver, encoder and motors. The board controls motor actuation by sending PWM and direction signals

to the motor driver after reading encoder signals for odometry. On the other hand, the YHN-ROS board,

52

International Action Research on TVET Conference 2025 (IARTC 2025)

which provides battery power to the motors, is connected to the Cytron MDD10A motor driver in Figure
8.

Power connection between Cytron
Motor Driver and YHN-ROS Board

Figure 8: Power connection between Cytron Motor Driver and YHN-ROS Board.

3.2.7 Robot Operating System 2 (ROS2)

The Robot Operating System 2 (ROS2) is a next-generation framework that builds upon the

original ROS1 and offers notable enhancements in scalability, communication and reliability. While

53

International Action Research on TVET Conference 2025 (IARTC 2025)

ROS1 established the groundwork for the development of robot software, ROS2 was created to address
the shortcomings of its predecessor and satisfy the demands of contemporary, intricate robotic systems.
DDS (Data Distribution System), which enhances data communication between nodes, is one of the
main improvements in ROS2 (Phueakthong & Varagul, 2021). Quality of Service (QoS) settings in
DDS give users more control over how data is transmitted and received. These parameters are crucial
for controlling communication priorities like low latency and dependability, particularly in real-time
applications (Ye et al., 2023).

Additionally, ROS2 provides Intra-Process Communication, which speeds up data exchange
between nodes in the same process. ROS2 is independent of a central ROS master, in contrast to ROSL1.
This makes distributed systems more flexible and fault tolerant (Ye et al., 2023). By utilizing Node
Recovery features, the system can also recover from node failures more successfully. Furthermore,
ROS2 facilitates multi-threaded execution and real-time capabilities, enabling the effective parallel
execution of complex tasks (Ye et al., 2023). The implementation of SROS2, which ensures secure
communication between nodes, has further enhanced security. Various types of hardware, including
LiDAR, cameras, IMUs, encoders and motor controllers, can be integrated with the free and open-
source ROS2 framework. It contains modules such as slam toolbox for mapping, nav2_amcl for
localization, ros2_control for hardware interface management and nav2_bringup for autonomous
navigation.

In this study, ROS2 Humble was set up on a Raspberry Pi 4 running Ubuntu 22.04 and a PC. It
demonstrated robust compatibility and consistent performance. All things considered, ROS2 offers an

effective, contemporary framework for creating dependable, perceptive autonomous robotic systems.

3.2.8 Micro-ROS (ROS for microcontrollers)

Developers can delegate basic yet essential tasks, like sensor data collection, actuator control
and hardware-level communication, to microcontrollers by incorporating Micro-ROS into a robotic
system. This enables more potent systems, like the Raspberry Pi 4, to handle more computationally
demanding tasks, like mapping and navigation. The Teensy 4.1 microcontroller running FreeRTOS, a
real-time operating system designed for embedded systems, has Micro-ROS installed in the example
(Phueakthong & Varagul, 2021). Together with FreeRTOS, the Micro-ROS application is uploaded,
enabling the microcontroller to reliably perform real-time tasks. A serial connection to a Micro-ROS
Agent running on the Raspberry Pi 4 allows communication between the microcontroller and the main
robot system. By translating communications between the microcontroller and the ROS2 nodes in the
main system, this agent serves as a bridge. The microcontroller thus becomes a fully functional part of

the ROS2 network, able to publish and subscribe to topics in the same way as any other ROS2 node.

54

International Action Research on TVET Conference 2025 (IARTC 2025)

3.2.9 Mapping

A key process in autonomous robotics is mapping, in which a robot uses information from
multiple sensors, including LiDAR, IMU, wheel encoders and RGB-D cameras, to generate a map of
its environment. This map serves as a static reference that the robot uses for autonomous navigation
and path planning, enabling it to identify its surroundings and make intelligent decisions about
movement, obstacle avoidance and localization.

The Simultaneous Localization and Mapping (SLAM) technique is employed in this robotic
system to calculate the robot’s current position on the map and carry out mapping. For this purpose,
slam_toolbox is a common ROS2 package that effectively integrates sensor data to create dependable
and accurate maps (Macenski & Jambrecic, 2021). The robot is manually moved throughout the
environment to gather data during the mapping phase. The IMU logs orientation and acceleration, the
encoder tracks wheel rotation and movement and the LiDAR measures the distance to objects in the
vicinity. A real-time cloud point visualization of walls and obstacles is produced by SLAM using these
combined inputs.

LiDAR data is usually published to the /scan topic in the ROS2 ecosystem. In order to create
a 2D representation of the environment in the visualization tool Rviz2, the SLAM package subscribes
to this topic and processes the laser scan data. A dynamic “cloud point” that represents the locations
of walls, furniture, and other stationary objects in relation to the robot is the result.

The final map is saved in two essential files, a .pgmfile and a .yaml file, after the environment
has been thoroughly explored and mapped. While the .yaml file contains crucial metadata like the
map’s resolution, origin coordinates and physical dimensions, the .pgm file is a grayscale image that
represents the map. The map is then used by packages like nav2 for path planning and localization

during the robot’s autonomous navigation phase.

3.2.10 AMCL and Navigation

An essential algorithm in ROS2 for estimating a robot’s location on a known map is called
AMCL (Adaptive Monte Carlo Localization). It is essential for autonomous navigation, which typically
consists of three primary phases: motion control, path planning and localization.

The first step is to use AMCL to find the robot's starting position on the navigation map
(Phueakthong & Varagul, 2021). By comparing LIiDAR scan data and odometry readings with the
known map, this algorithm uses a particle filter to estimate the robot’s position. AMCL determines the
robot’s most likely location by evaluating how well the sensed environment matches the map. For
effective path planning and successful navigation, precise localization is crucial at this point.

Path planning, which is separated into local and global planning, is the second step. The Global

Planner uses algorithms like A* and Dijkstra to determine the best route from the robot’s current

55

International Action Research on TVET Conference 2025 (IARTC 2025)

location to the desired position using the NavFn plugin (Phueakthong & Varagul, 2021). This planner
does not account for dynamic elements, but it does account for static obstacles like walls and furniture.
On the other hand, the Local Planner modifies the route in real time according to the current
environment. It assists the robot in avoiding unexpected objects or moving obstacles like people. These
modifications are successfully made for this robot using the DWB (Dynamic Window Approach) Local
Planner.

Motion control is the last phase. During this stage, the /cmd_vel topic is used to send linear and
angular velocity commands to the robot. The robot is guided along the predetermined route by these
commands. The robot can navigate safely and independently in dynamic environments by coordinating
these three stages: motion execution, dual-layer path planning, and localization with AMCL.

3.2.11 RViz2

RViz2 is essential for visualizing and interpreting the robot's surroundings, sensor data, and
system states in any robotics project involving ROS2. RViz2 is a crucial tool for tracking and
troubleshooting the robot’s mapping and navigation operations in this autonomous robot project. It
gives the developer a clear and interactive visualization of the robot’s movements and environment by
enabling real-time observation of the data collected by the robot’s sensors and navigation algorithms
(Macenski et al., 2022; Phueakthong & Varagul, 2021). In order to display a variety of sensor data and
robotic states through visualizations, RViz2 is made to integrate seamlessly with ROS2. RViz2 is
mainly utilized in this particular project to visualize the robot's SLAM (Simultaneous Localization and
Mapping) process, which is crucial for autonomous navigation. Using sensors like the LiDAR, IMU,
and encoders, the robot collects information about its surroundings and position as it navigates its
environment. The robot’s internal systems then process this data, and RViz2 shows the robot’s position,
the map it created, and its path.

The ability of RViz2 to display LaserScan data from the RPLIDAR sensor is one of its main
characteristics in this study. By sending out laser beams and timing how long it takes for them to return,
this sensor gives the robot comprehensive information about its environment. Real-time obstacles and
open space surrounding the robot are depicted on a 2D map in RViz2. This aids the developer in making
sure the robot is accurately assessing its surroundings and choosing the best course of action.
Furthermore, RViz2 is a great tool for visualizing the odometry data from the IMU sensor and the
robot's encoders. Developers can monitor the robot’s movements and confirm the precision of its
localization and navigation algorithms by using RViz2 to plot the robot’s position on a map. In order to
help with debugging and system optimization, it can also display TF (transform) data, which illustrates
the robot’s orientation and position in the environment in relation to various frames of reference.
Additionally, RViz2 offers tools for visualizing robot states, including orientation, speed, and sensor

readings, enabling developers to evaluate the proper operation of the robot’s control systems.

56

International Action Research on TVET Conference 2025 (IARTC 2025)

Additionally, it features interactive markers that let users manually program the robot with objectives
or points of interest, making it easier to test and simulate various scenarios.

In this autonomous robot study, RViz2 is an essential tool that gives developers a robust, real-
time interface to track robot movements, monitor sensor data, and troubleshoot mapping and navigation
algorithms. A crucial component of the project’s development and testing stages, RViz2’s visualizations
of SLAM, odometry and LiDAR data guarantee the robot’s accurate and efficient operation. Example
of RViz2 mapping visualisation is depicted in Figure 9.

Figure 9: Visualisation of RViz2 during the mapping procedure.

4.0 RESULTS AND ANALYSIS

Two important tests, an autonomous differential drive robot was created for autonomous
navigation and map creation. With the aid of sensors such as LiDAR and an IMU, the robot uses SLAM
to create a map of its surroundings. The robot used odometry and sensor fusion to navigate the lab on
its own, avoiding obstacles and following a path. The tests demonstrated the robot’s potential for use in
autonomous exploration and indoor navigation by confirming its ability to map and navigate within a

controlled environment.

4.1 Navigation Map

The robot was manually teleoperated around its surroundings using a PC running Ubuntu 22.04
in order to create the navigation map. The mapping procedure was completed with the slam_toolbox
package, which created a real-time occupancy grid map of the surrounding area using LiDAR and

odometry data as input. The result was a navigation map with a 78 x 34 pixel resolution that accurately

57

International Action Research on TVET Conference 2025 (IARTC 2025)

and clearly depicted the layout of the surroundings. Later, the robot’s autonomous navigation tasks were
built upon this map as their foundation. The slam_toolbox package, which was essential to the SLAM

and navigation procedures’ success, is used to create the navigation map in Figure 10.
|
I I
I E

The two components of the navigation experiment were the static map with dynamic obstacles

Figure 10: Navigation Map.

4.2 Navigation Test

in the environment and the static map with only static objects. While navigating, sensor data was
visualized using RViz2. To illustrate obstacles, LIDAR data was shown as a point cloud, and the robot’s
position and orientation were indicated by IMU and encoder data published through the /odom topic.

The 2D Pose Estimate tool in RViz2 was used to localize the robot before it could start navigating. An
initial estimate of the robot's location and orientation on the map was given in this step. The robot’s
position was then continuously adjusted by the AMCL algorithm in response to sensor input. As seen

in Figure 11, precise path planning and steady robot movement depend on accurate localization.

s . - N L R L -
= | -_-
I
. g o .
b
¥ Pttt & ® F
Hiigatien
Ualisntion:
[T S
P T
s &
Petsea ¢
.....
nirpemad | B Thaemmgh Firves, st
— 11 e

Figure 11: Robot localization process using 2D Pose Estimate feature in RViz2.

58

International Action Research on TVET Conference 2025 (IARTC 2025)

RViz2 showed both the Global Costmap and the Local Costmap after Navigation2 (Nav2) was
turned on. The local map was 3 m x 3 m in size. Every navigation trial began at the same starting point
and traveled to the same destination. The robot followed the global path that was created in order to
reach the objective (Figure 12(b)). When a dynamic object came into the robot’s path while it was
moving, the Local Planner recalculated a new route to avoid it (Figure 12(d)). As configured in the
controller_server, the robot’s goal tolerance was set to 0.25 meters (xy_goal_tolerance) and 0.25 radians
(yaw_goal_tolerance).

"N}

(a) (b)

_,JL
(c) (d)
Figure 12 (a) Navigation map view with Global and Local Costmap displayed in RViz2. (b) Robot

following the global path toward the goal location. (¢) Robot approaching the destination point.

(d) Local Planner generating a new path to avoid a dynamic obstacle.

International Action Research on TVET Conference 2025 (IARTC 2025)

Table 1
Navigation using the static map (no dynamic objects).
Experiments Robot Location Error Time(s)
x(cm) y(cm)
1 -4.3 4.5 97
2 2.5 -2.6 101
3 -11.5 -11.8 98
4 3.7 -4.9 105
5 -2.9 55 96
Average -2.5 -1.86 99.4
Table 2
Navigation with dynamic objects present.
Experiments Robot Location Error Time(s)
x(cm) y(cm)
1 -3.6 -8.5 115
2 -5.8 -6.5 120
3 -6.4 -10.7 119
4 -2.8 -12.5 123
5 -4.9 3.6 118
Average -7.8 -6.92 119

The robot’s positional error and travel time were recorded in two separate tables:

i. Table 1: Navigation using the static map (no dynamic objects)

ii. Table 2: Navigation with dynamic objects present

60

International Action Research on TVET Conference 2025 (IARTC 2025)

‘Q y-axis
=~ :
i ‘ Target Point at (0,0)
[coordinate
‘l ‘
Neglafive x-a)}is and “ | Positive x-axis and
POSftIVe y-axis y Positive y-axis
Region . ‘ Region
.) | |
R GO
‘ x-axis
Negative x-axis and ‘ Positive x-axis and
Negative y-axis [Negative y-axis
Region ‘ Region

Figure 13: Reference Frame for Robot Positional Error in Cartesian Coordinates.

The coordinate system used to calculate the robot’s positional error with respect to a target point at
the origin (0,0) is depicted in the Figure 13. The x and y axes are used to divide the coordinate plane
into four quadrants:

i The upper-right quadrant represents the region where both x and y values are positive.

ii. The upper-left quadrant represents the region where the x values are negative and y values

are positive.

iii. The lower-left quadrant is where both x and y values are negative.

iv. The lower-right quadrant contains positive X values and negative y values.

The navigation system of the robot can calculate its error in position (x and y) with respect to
the objective using this coordinate-based method, which is crucial for path planning and corrective
motion. Accurate average performance data was obtained by repeating each test scenario five times.
The findings demonstrated that the robot successfully and accident-free arrived at its destination on its
own in every trial. The robot was able to recognize dynamic objects even though they weren’t on the
original map and re-plan its route using the Local Costmap. The robot maintained positional accuracy
even though the presence of dynamic obstacles slightly extended the travel time. The acceptable goal

tolerance set up in Nav2 was maintained by the maximum recorded position error of 12.5 cm.

5.0 CONCLUSIONS

The experimental findings show that the autonomous differential drive robot used the ROS2

Navigation2 framework to successfully complete both mapping and navigation tasks. The robot used

61

International Action Research on TVET Conference 2025 (IARTC 2025)

slam_toolbox to create a usable 2D map, AMCL to precisely localize itself and autonomously navigated
to its destinations while dodging both static and dynamic obstacles. The efficiency of integrating
LiDAR, odometry and IMU data in a ROS2 ecosystem for autonomous indoor robotics is confirmed by
this result. Future enhancements might incorporate vision-based detection, enhance obstacle prediction

or optimize the local planner for congested areas.

REFERENCES

Firmansyah, R. A., Prabowo, Y. A., Suheta, T., & Utomo, A. N. D. (2024). Implementation of SLAM
Gmapping and Extended Kalman Filter for Security Robot Navigation System. Emitor: Jurnal Teknik
Elektro, 145-153. https://doi.org/10.23917/emitor.v24i2.3104

Macenski, S., Foote, T., Gerkey, B., Lalancette, C., & Woodall, W. (2022). Robot Operating System 2: Design,
architecture, and uses in the wild. In Science Robotics (Vol. 7, I1ssue 66). American Association for the
Advancement of Science. https://doi.org/10.1126/scirobotics.abm6074

Macenski, S., & Jambrecic, I. (2021). SLAM Toolbox: SLAM for the dynamic world. Journal of Open Source
Software, 6(61), 2783. https://doi.org/10.21105/joss.02783

Mochurad, L., Hladun, Y., & Tkachenko, R. (2023). An Obstacle-Finding Approach for Autonomous Mobile
Robots Using 2D LiDAR Data. Big Data and Cognitive Computing, 7(1).
https://doi.org/10.3390/bdcc7010043

Moore, T., & Stouch, D. (n.d.). A Generalized Extended Kalman Filter Implementation for the Robot Operating
System. http://www.cra.com/robot_localization_ias13.zip

Phueakthong, P., & Varagul, J. (2021). A Development of Mobile Robot Based on ROS2 for Navigation
Application. International Electronics Symposium 2021: Wireless Technologies and Intelligent Systems
for Better Human Lives, IES 2021 - Proceedings, 517-520.
https://doi.org/10.1109/IES53407.2021.9593984

Song, M., & Zhang, Y. (2024). Industrial Mobile Robot Navigation Based on the LiDAR-IMU-Visual
Measurements. https://doi.org/10.21203/rs.3.rs-5391723/v1

Yan, Y., Zhang, B., Zhou, J., Zhang, Y., & Liu, X. (2022). Real-Time Localization and Mapping Utilizing
Multi-Sensor Fusion and Visual-IMU-Wheel Odometry for Agricultural Robots in Unstructured,
Dynamic and GPS-Denied Greenhouse Environments. Agronomy, 12(8).
https://doi.org/10.3390/agronomy12081740

Ye, Y., Nie, Z., Liu, X,, Xie, F., Li, Z., & Li, P. (2023). ROS2 Real-time Performance Optimization and
Evaluation. Chinese Journal of Mechanical Engineering (English Edition), 36(1).
https://doi.org/10.1186/s10033-023-00976-5

62

